ECE2020 Final Exam Summer 2013 GTL
July 31, 2013

Name:

Show your work for any possible partial credit. 100 possible points, 12 exam pages plus a figure.

High Level Language

Assembly Language

Instruction Set

Memory Data Path Controller
Storage Functional State
Units Machines

Building Blocks

Gate

Switches and Wires

1) (6 Points) Three incomplete circuits are shown below. Complete each circuit by adding the needed
switching network so the output is pulled high or low for all combinations of inputs (i.e., no floats or
shorts). Complete each circuit (pull down, pull up, or both) and write the expression if one is not given.
Assume both inputs and complements are available.

Out1 =

Out,

Outz

out, = Out;= D (A +B+C)E

High Level Language

Assembly Language

Instruction Set

Memory Data Path Controller
Storage Functional State
Units Machines |

Building Blocks

Gate

Switches and Wires

2) (5 points) Implement the following expression using only NOR gates and inverters. Then determine the
number of switches required. Use proper mixed logic notation. Do not modify the expression. Do not
assume compliments of inputs are available.

Out=((A-B+C) D+E) F

Number of switches

High Level Language

Assembly Language

Instruction Set

Memory Data Path Controller
Storage Functional State
Units Machines

Building Blocks

Gate

Switches and Wires

3) (5 points) Using only the devices below, implement a two-to-one mux on the diagram below. (The
block diagram of a 2 to 1 mux is show above just as an FY|1 only).

In) —

—o- — Out

Inl —

Select —

High Level Language

Assembly Language
Instruction Set - T11 Outh=—
Memory Data Path Controller
Latch
Storage Functional State
Units Machines En
Building Blocks
Gate
Switches and Wires clkl

4) (5 points) Using a two-to-one mux, implement a transparent latch using basic gates (NAND, NOR,
AND, OR, NOT, pass). Enable here is an active high write enable. (The block diagram of a transparent
latch is show above just as an FY1 only).

Try to minimize transistors.

Input — — Quiput

Fnabl=

High Level Language

Assembly Language

Instruction Set

Controller

State

Data Path

Functional

Units
Building Blocks

Memory

Storage

Gate

Switches and Wires

5) (8 points) Consider the register implementation below.

ouT

Latch
En

clk2

Latch

En

clkl

WE

Assume the following signals are applied to the register above. Draw the signal at point A (output of the

c
=
S
c
£
[
5
=
(o] |
°
<
s I R
-
@
8
w
T - _—— - = — - - N
>
e) |
aea-- I I
o - - |
[3+]
<
S . T I
e
>
[72]
) e e e - I e o
< —
=
=
5 . T I I
K]
o
e R s
0 ——
(&)
[«D}
w
2 . B N
o
E _H
>
o
B e DUy e [S
>
o H——
N
| O e N N
>
2 _H *
e
g - - e
o
o
< N e
©
[
=
17 - O
[«B)
=
=]
= -- S R g
=
IS
C 0
-
5 =
= @©
= S

(@]

£ 2w 5
S T =2 Z2 <« ©O

High Level Language

Assembly Language

Instruction Set

Memory Data Path Controller
Storage Functional State
Units Machines |

Building Blocks

Gate

Switches and Wires

6) a)(5 points) Complete the truth table below to the left for a "“full adder"” as shown below on the right.

Sum Carryqu

b) (10 Points) Using four of the full adder blocks shown above to the right, show how four of them would
be used to implement a four bit adder that would be able to add/subtract two four bit numbers. Your
inputs are X3, X2, X1, X0, Y3, Y2, Y1, YO0, add/sub, and your outputs include S3, S2, S1, SO. You may

l

y

cin
sum

cout

use any additional logic gate types you want. Draw your hardware diagram below:

7) (10 points total) State machine problem straight from the practice problems:

Strike State Machine

You're designing a baseball scoreboard. A sab-problem involves keeping track of strikes and fonls. A
strike occurs when the batter swings at the ball and misses. or when the batter does not swing at a

“pood” pitch. If a batter earns three strikes duripg bis/ber turn at bat, hefshe & “ont™. A foul ocears
when the batter hits the ball. but the ball does not land in “fai™ tervitory. Fouls are counted as strikes
until the bhatter earns two strilkes. Then foals are ignored. The state diagram below captures these rales.
The nuall input indicates peither a strike nor a foul occurved during that elock eyele. The strike and foul
input cannot oceur simultanecusly, =0 the outpat for this case is don't care.

m:]l/"\l
—

-\Mﬁ_:ml

Part A Using the state dingram above, complete the state table for this diagram. The inputs arve strile,
foul, and ztate hitzs 5, and 55 The outpats are next state bits N5 and N 5;. and out.

505 strik Foul | N5, NS ot
il il il {

Part B Determine the simplified logical expression for N5, N Ss, and out using vour state table in part
A, Complete the Karnangh maps bhelow, identify the prime implicants, and express the result.

N5, N5, ot
A~ A~~~ A~

&l
il

§

strike strike (strike
§
(

} strike

e e et i i e v et
foul foul foul foul foul foul foul foul foul

NE& =

NS =

out =

Part C Implement this state machine using vour expression from part B plus two register cells, Use an

ieon for a one bit register cell. You do not have to show the implementation of a register here. Your logic

should be simplified.

High Level Language

Assembly Language

Instruction Set

Memory Data Path Controller
Storage Functional State
Units Machines |

Building Blocks

Gate

Switches and Wires

8) (6 points) SIMM Memory System:

Using SIMMs that are 8 million addresses by 8 bit words:

Part A Suppose that these SIMMS are used to build a 16 million address memory system with 8 bit
words. Using however many of these SIMMSs you need, draw this memory system. In the drawing you
make below, add as many SIMM chips as you need and then be sure you label the memory system inputs,
Addr, R/W, and Mem Sel, and the system's outputs DO, D1, D2, etc. Also label bus widths, and inputs and
outputs of any required decoders. Put a star on the chip(s) containing the memory location addressed
by an address containing a one followed all zeros (all of the address bits are input as a zero except
the most significant bit which is a one).

-+ Addr DO

—R/W
—{cs D7

[TTTTTTI

High Level Language

Assembly Language

Instruction Set

Memory Data Path Controller
Storage Functional State
Units Machines |

Building Blocks

Gate

Switches and Wires

9) Using the attached single cycle datapath we have discussed extensively in class (see last page of exam
for part of it), implement the microcode for the following instructions (see instruction examples also on

last page):
a) (5 points) addi $3, $2, 25
| X |Y |Z |rw|im [imva |au |-a |lu If |su st [Id |st |1/ msel | description
e en | /s |en en en | en
en -w
1
b) (5 points) sw $1, ($2)
| X |Y |Z |rw|im |imva |[au |-a |lu If |su st |Id |st |1/ msel | description
e en | /s |en en en | en
en -W
1

¢) (5 points) Thinking about the "putting it all together" system block diagram: Which bit fields in the part
(a) microcode you wrote above would be stored in a Read Only Memory controller? For those fields not
stored in the Read Only memory controller where would they come from?

10

High Level Language

Assembly Language

Instruction Set

Memory Data Path Controller
Storage Functional State
Units Machines |

Building Blocks

Gate

Switches and Wires

10) (/5 points) Instruction Format. For the third instruction type we discussed, the Immediate Instruction

Format, show the actual 32 bits for the instruction:

addi $10, $8, 4

assuming the opcode for addi is 001000.

11

9) Assembly language programming

Consider the following MIPS program fragment. The attached last exam page lists the instruction set and
explains them with examples.

address label

instruction

1000 start: | addi $1,50,3200
1004 1w 52, (51)

1008 loop: | addi $1,%51,4
1012 1w 54, (51)

1016 s1lt $3,52,54
1020 beg 53,50, skipl
1024 add $2,50,54
1028 skipl: | slti 53,51, 324
1032 bne 53,50, loop
1036 add 55,50,52

Assume memory holds the following starting at address 300:

Address Data

300 -16
304 -7
308 -12
312 5
316 8
320 -3
324 10
328 -19
332 34
336 20

Part a) (5 points) How many words of data are read in by the program fragment?

Total number of data words read:

Part b) (5 points) How many times is the add instruction at address 1024 executed?

Number of times:

Part c) (5 points) What are the values in the following registers at the end of the program fragment?

$1=
$2=
$3=
$4 =
$5=

Part d) (5 points) What does this program fragment do?

12

You may tear this off from the exam and you do not need to turn in this page.

e

cyele cycle number

X register driven onte X bus
T register driven onte ¥ bus
Z register written from 7 bus
we register write enable

i en immediate enable on ¥ bus
i va immediate valne

men

sign extender |

au en arithmetic unit enable
-4/ -add / sub (0 = add. 1 = subtract}
lu en logical unit enable
If logical function
Suen shift unit enable
5t shift type
ld en load enable
sten store enable
read/-write (0 = write, 1 =read)
memory select
operation description

addr
register SIS
file
32x32 ‘ D
‘ memory
|
A 7 A 7 % 7 sten
_\ . / . L . _\. / . ,.-’f—|— " \.\. v f_.-" L data
\ arithmetic / \ logical / + \ shift / >
auen —__Ulli’[_,"'f luen _\\A&’E suen _\\ Ulli'[f.-"
|
‘ 4 r-w msel
logical functions shift types ‘
X Y| out 0 = logical
0 0| If 1 = arithmetic |
1 0 If 2 =rotate lden
0 1] If; + count shifts right
1 1] If - count shifts left
instruction example meaning
add 53 51 = 52 4+ 53
subtract 53 51 = 52 53
add immediate addi $1,52,100 51 =52 + 1
multiply mul 51,%2,53 1 = 82 * 53
drvide div 51,52,53 1 =52 / 53
and and 51,52,53 1 =52 & 53
or or $1,52,53 51 = 52 | 53
xor xor 51,52,53 1 = 52 xor 53
and immediate andi $1,53%2,1 51 = 82 & :
or immediate ori 101 1 =52 |
xor immediate xori £1,52,100 51 = 52 xo
shaft left logical sll 51,52,5 $1 = 52 g
shaft right logical srl 51,52,5 51 = 52 5
shaft left anithmetic sla 51,52,5 51 = 52 << 5 (arithmetic)
shift right anthmetic sra 51,52,5 51 = 52 >> 5 (arithmetic)
load word 1w 51,) 51 = m [$2]
store word sw $1,
load upper immediate lui 51,1
branch 1f equal beqg 51,
branch 1f not equal kne 51,
set if less than slt 51,
set if less than immediate 51
Jump 3j
jump register 3j
Jump and link jal 10000 + 4; PC = 10000*4

13

