
ECE 2030 A 10:00am Computer Engineering Spring 2010
5 problems, 5 pages Final Exam Solutions Cinco de Mayo 2010

Problem 1 (3 parts, 24 points) Decoding Decoders

Part A (6 points) Define a 1 to 2 decoder by completing the behavior table.

IN EN O0 O1

X 0 0 0

0 1 1 0

1 1 0 1

IN

EN

O0

O1

1 to 2
decoder

Part B (8 points) Implement a 1 to 2 decoder using basic gates. Assume only true (non-
complemented) inputs are available. Label all inputs and outputs.

Part C (10 points) Using only the three 1 to 2 decoders shown below, implement a 2 to 4 decoder
with an enable. Label the decoder inputs (IN1, IN0, EN) and outputs (O0, O1, O2, O3).

IN

EN

O0

O1

1 to 2
decoder

IN

EN

O0

O1

1 to 2
decoder

IN

EN

O0

O1

1 to 2
decoder

O0

O1

O2

O3

IN0

IN1

EN

1

ECE 2030 A 10:00am Computer Engineering Spring 2010
5 problems, 5 pages Final Exam Solutions Cinco de Mayo 2010

Problem 2 (4 parts, 30 points) Design Fiesta
Complete each design below. Be sure to label all signals.

Part A: Implement the following expression using N and
P type switches. OutX=AB⋅C ⋅D

Part B: Implement the following behavior using only
pass gates and inverters.

X Y Z Z

A 0 Qo Qo

A 1 A A

Part C: Determine the appropriate expression for this
mixed logic design. How many transistors are required?

Out = ABCD⋅E

transistors = 8 + 6 + 4 + 4 x 2 = 26T

Part D: Reimplement the design in Part C using only
NAND and NOT gates. How many transistors are
required?

transistors = 6 + 2 x 4 + 2 x 2 = 18T

2

ECE 2030 A 10:00am Computer Engineering Spring 2010
5 problems, 5 pages Final Exam Solutions Cinco de Mayo 2010

Problem 3 (1 part, 25 points) Assembly Programming
Part A (25 points) Complete this subroutine that searches an array of 100 integers beginning at
memory address 5000 and returns its minimum ($4) and maximum ($5) values. Use the
following registers: $1= array pointer, $2= end address, $3= current value, $6= branch predicate.

label instruction comment

MinMax: addi $1, $0, 5000 # init array ptr

addi $2, $1, 400 # set end address

lw $4, ($1) # init min

add $5, $3, $0 # init max

Loop: lw $3, ($1) # load current element

slt $6, $3, $4 # if current >= min

beq $6, $0, Skip1 # then skip update

add $4, $3, $0 # update min

Skip1: slt $6, $5, $3 # if current <= max

beq $6, $0, Skip2 # then skip update

add $5, $3, $0 # update max

Skip2: addi $1, $1, 4 # point to next element

bne $1, $2, Loop # if not done, loop
jr $31 # return to caller

MIPS Instruction Set
instruction example meaning

add add $1,$2,$3 $1 = $2 + $3
subtract sub $1,$2,$3 $1 = $2 - $3
add immediate addi $1,$2,100 $1 = $2 + 100
multiply mul $1,$2,$3 $1 = $2 * $3
divide div $1,$2,$3 $1 = $2 / $3
and and $1,$2,$3 $1 = $2 & $3
or or $1,$2,$3 $1 = $2 | $3
xor xor $1,$2,$3 $1 = $2 xor $3
and immediate andi $1,$2,100 $1 = $2 & 100
or immediate ori $1,$2,100 $1 = $2 | 100
xor immediate xori $1,$2,100 $1 = $2 xor 100
shift left logical sll $1,$2,5 $1 = $2 << 5 (logical)
shift right logical srl $1,$2,5 $1 = $2 >> 5 (logical)
shift left arithmetic sla $1,$2,5 $1 = $2 << 5 (arithmetic)
shift right arithmetic sra $1,$2,5 $1 = $2 >> 5 (arithmetic)
load word lw $1, ($2) $1 = memory [$2]
store word sw $1, ($2) memory [$2] = $1
load upper immediate lui $1,100 $1 = 100 x 216

branch if equal beq $1,$2,100 if ($1 = $2), PC = PC + 4 + (100*4)
branch if not equal bne $1,$2,100 if ($1 ≠ $2), PC = PC + 4 + (100*4)
set if less than slt $1, $2, $3 if ($2 < $3), $1 = 1 else $1 = 0
set if less than immediate slti $1, $2, 100 if ($2 < 100), $1 = 1 else $1 = 0
jump j 10000 PC = 10000
jump register jr $31 PC = $31
jump and link jal 10000 $31 = PC + 4; PC = 10000

3

ECE 2030 A 10:00am Computer Engineering Spring 2010
5 problems, 5 pages Final Exam Solutions Cinco de Mayo 2010

Problem 4 (4 parts, 36 points) "Math is fun"
Part A (9 points) Consider the instruction set architecture below with fields containing zeros.

0000 0000 00 0000 00 0000 00 0000 0000 0000 0000
opcode dest. reg. source 1 reg. immediate value

What is the maximum number of opcodes? 256
What is the number of registers? 64
What is the range of the signed immediate value? ±128K

Part B (9 points) For the eight bit representations below, determine the most positive value and
the step size (difference between sequential values). All answers should be expressed in
decimal notation. Fractions (e.g., 3/16ths) may be used. Signed representations are two’s
complement.

representation most positive value step size

unsigned integer
(8 bits) . (0 bits) 255 1

signed fixed-point
(6 bits) . (2 bits) 31 1/4

unsigned fixed-point
(0 bits) . (8 bits) 255/256 1/256

Part C (6 points) A 48 bit floating point representation has a 37 bit mantissa field, a 10 bit
exponent field, and one sign bit.

What is the largest value that can be represented (closest to infinity)? 2 511

What is the smallest value that can be represented (closest to zero)? 2 -512

How many decimal significant figures are supported? 11
Part D (12 points) For each problem below, compute the operations using the rules of arithmetic,
and indicate whether an overflow occurs assuming all numbers are expressed using a five bit
unsigned fixed-point and five bit two’s complement fixed-point representations.

 0.111
+ 0.111

 .0011
+ 1.1101

 1010.0
- 1001.1

 0.00
- 100.00

result 1.110 0.0000 0.1 100.00
unsigned error? ■ no □ yes □ no ■ yes ■ no □ yes □ no ■ yes

signed error? ■ no □ yes ■ no □ yes ■ no □ yes □ no ■ yes

4

ECE 2030 A 10:00am Computer Engineering Spring 2010
5 problems, 5 pages Final Exam Solutions Cinco de Mayo 2010

Problem 5 (5 parts, 30 points) Microcode in Reverse
The microcode fragment below comes from a color scanner control program that runs on the
datapath discussed in class. Unfortunately, don’t care values (X) have been converted to zeros.
Assume register zero is a normal register (not hardwired to the value zero).

X Y Z rwe im
en

im va au
en

-a/s lu
en

lf su
en

st ld
en

st
en

r/-w msel

1 0 0 3 1 1 4000 0 0 1 C 0 0 0 0 0 0
2 3 0 0 1 0 0 0 0 0 0 0 0 1 0 1 1
3 0 0 2 1 1 FF 0 0 1 8 0 0 0 0 0 0
4 0 0 0 1 1 8 0 0 0 0 1 0 0 0 0 0
5 0 0 1 1 1 FF 0 0 1 8 0 0 0 0 0 0
6 1 2 2 1 0 0 1 0 0 0 0 0 0 0 0 0
7 0 0 0 1 1 8 0 0 0 0 1 0 0 0 0 0
8 0 0 1 1 1 FF 0 0 1 8 0 0 0 0 0 0
9 1 2 2 1 0 0 1 0 0 0 0 0 0 0 0 0
10 0 0 0 1 1 8 0 0 0 0 1 0 0 0 0 0
11 0 2 2 1 0 0 1 0 0 0 0 0 0 0 0 0
12 2 0 2 1 1 2 0 0 0 0 1 1 0 0 0 0
13 3 2 0 0 0 0 0 0 0 0 0 0 0 1 0 1

Part A (5 points) Describe the operation that occurs during cycle 2. Be specific.

$0 <- mem[0x4000]
For the remaining parts, assume $0 = 0x44022118 at the end of cycle 2.

Part B (5 points) What is the value of register 0 at the completion of cycle 7 (in hexadecimal).

0x4402
Part C (5 points) What is the value of register 2 at the completion of cycle 9 (in hexadecimal).

0x3B
Part D (5 points) What is the value of register 2 at the completion of cycle 12 (in hexadecimal).

0x1F
Part E (10 points) Describe the operation of this microcode fragment. Be specific.
Four packed eight-bit unsigned integers are loaded from memory at 0x4000,
unpacked. The average of the four values is computed and stored back to memory
at 0x4000.

5

