Instructions: This is a closed book, closed note exam. Calculators are not permitted. If you have a question, raise your hand and I will come to you. Please work the exam in pencil and do not separate the pages of the exam. For maximum credit, show your work. *Good Luck!*

Your Name (*please print*)

ECE 2030 A 10:00am 4 problems, 5 pages

Problem 1 (3 parts, 30 points)

Computer Engineering Exam Three

Part A (10 points) Consider a **256 Mbit** DRAM chip organized as **32 million addresses** of **one byte words**. Assume both the DRAM cell and the DRAM chip is square. The column number

Spring 2010 21 April 2010

Memory Systems

and offset concatenate to form the memory in class, answer the following questions about	address. Using the organization approach discussed the chip. Express all answers in decimal.
number of columns	
column decoder required $(n \text{ to } m)$	
type of mux required $(n \text{ to } m)$	
number of muxes required	
number of address lines in column numb	er
number of address lines in column offse	et
Part B (10 points) Consider a one Gbyte m byte words using DRAM chips organized as	emory system with 128 million addresses of eight 16 million addresses by 16 bit words.
word address lines for memory system	
chips needed in one bank	
banks for memory system	
memory decoder required $(n \text{ to } m)$	
DRAM chips required	
-	

Part C (10 points) (10 points) Design a 96M address x 4 bit memory system using 32M address x 4 bit memory chips. **Label all busses and indicate bit width**. Assume R/W is connected and not shown here. Use a decoder if necessary. Be sure to include the address bus, data bus, and MSEL.

Problem 2 (3 parts, 25 points)

Microcode

Using the supplied datapath, write microcode fragments to accomplish the following procedures. Express all values in hexadecimal notation. Use 'X' when a value is don't cared. For maximum credit, complete the description field. ∩ means bitwise logical AND.

$$R_2 = \frac{R_1}{256} + R_1 \cap 255$$

#	X	Y	Z	rwe	im en	im va	au en	-a /s	lu en	lf	su en	st	ld en	st en	r/ -w	msel	description
1																	
2																	
3																	
4																	

Part B (10 points) mem[0x100] = 0 - mem[0x100]. Use only registers 1, 2, & 3.

#	X	Y	Z	rwe	im en	im va	au en	-a /s	lu en	lf	su en	st	ld en	st en	r/ -w	msel	description
1																	
2																	
3																	
4																	
5																	

Part C (5 points) Exchange R₁ and R₂. Use only registers 1, 2 & 3.

#	X	Y	Z	rwe	im en	im va	au en	-a /s	lu en	lf	su en	st	ld en	st en	r/ -w	msel	description
1																	
2																	
3																	

Problem 3 (3 parts, 30 points)

Counters

Part A (10 points) Design a toggle cell using transparent latches and basic gates. Use an icon for the latch. Your toggle cell should have an active high toggle enable input $\overline{\textbf{CLR}}$, and an active low clear input $\overline{\textbf{CLR}}$, clock inputs Φ_1 and Φ_2 , and an output $\overline{\textbf{Out}}$. The $\overline{\textbf{CLR}}$ signal has precedence over $\overline{\textbf{TE}}$. Label all signals. Also complete the behavior table for the toggle cell.

TE	CLR	CLK	Out
0	0	$\uparrow\downarrow$	
1	0	$\uparrow\downarrow$	
0	1	$\uparrow\downarrow$	
1	1	$\uparrow\downarrow$	

Part B (10 points) Now combine these toggle cells to build a **divide by 10** (decade) counter. Your counter should have an external clear, external count enable, and four count outputs O_3 , O_2 , O_1 , O_0 . Use any basic gates (AND, OR, NAND, NOR, & NOT) you require. Assume clock inputs to the toggle cells are already connected. *Your design should support multi-digit systems*.

Ext CE —	TE Out CLR	- O ₀
	TE Out CLR	- O ₁
	TE Out CLR	- O ₂
Ext CLR —	TE Out CLR	- O ₃

Part C (10 points) Build a three digit decimal counter (0 - 999) using three decade counters drawn below. Use any basic gates you require. Assume clock inputs are already connected.

| Ext CE

Problem 4 (2 parts, 15 points) Microcode Part A (9 points) Consider the following input and output values for a shift operation. Determine the shift *type* and *amount* required to achieve the listed transformation. I/Os are in hexadecimal.

Input Value	Output Value	Shift Type	Shift Amount (signed decimal value)
87654321	32187654		
87654321	54321000		
87654321	FFFFFF87		

Part B (6 points) Consider the following input and output values for a logical operation. Determine the *logical function* and *function code* (in hexadecimal) required for the operation.

X Input	Y Input	Output	Logical Function	Function Code
87654321	0000FFFF	0000FFFF		
87654321	0000FFFF	FFFFBCDE		

