Problem 1 (25 points)

Here is some information about the 2114 RAM chip, which was used for video color RAM in the Commodore 64.

BLOCK DIAGRAM

As VGG
A ——3 | «— GND
As 4E ROW MEMORY ARRAY
. 64 ROWS
A 4@ SeLEeT 64 COLUMNS
A —F] -
Ag —z
| |
—] coLumMnio
Vo, E> —] CiRcuITs]
HoO iNPUT COLUMN SELECT
z [DATA
1o CONTROL $ ﬁ ﬁ ﬁ
a ?—'
10, Ay A, A, Ag
| g
r <1
g s
w

PIN CONFIGURATION | LOGIC SYMBOL
LT
Ag (1 ~ 18 Vee | Ag —
As[]2 17[0Ar | Ar—] — 110,
A3 18[1 As :2—
A4 15004 |] —1i0,
Alls 2 wfiuo, o] ™
A []s 13100, | oy — — 104
A7 12[Jvo, | A; —
sls 1[Jro, | As — — 1104
GND]9 o[Jw | %]
1
(outline dwgs JN,PN) -
GND
PIN NAMES
Ag-Ag ADDRESS INPUTS
1/01-1/04 DATA INPUT/OUTPUT
W WRITE ENABLE
g CHIP SELECT

a) How many words of memory does this chip contain?

]OZL/

(o

7 = k=

b) How many bits are in each word?

L\

c) Inthe block diagram, the memory array is described as 64 rows and 64 columns. |s that referring to the words

or to the bit cells?

0.+ u“g

d) How would the memory array be described if it was the opposite of your answer from #3? |.e. if you said it was

referring to the bit cells, what would the description be if it was referring to the words, and vice versa.

QL, s X

1L colamng

e) If adifferent chip contained four times as many words, how many additional address pins would be needed?

Tt\/o Mot/

f) Based on the block diagram, what combination(s) of S and W will tri-state the 1/O pins? Assume that the tri-

state drivers are active when their control signal is 1.

o0, 10 |

Problem 2 (10 points)
decoder

3

| |
M‘%— bit [— | bit | ﬁgL bit —

? I | | | | l

bit — bit — bit bit — bit |— bit —

' [| | | [[

bit bit —1 bit | bit bit [bit

° I | | | | |

S1S0
bit — bit — bit — bit bit — bit —
l—V —\/ J—V —\/ ’—V /
Az A1 Ao D2
? D1
Do

a) Based on the memory devices we’ve seen in this class, what is an appropriate name for the signal marked with a
guestion mark in the bottom left of the diagram?
(/l/'; i dejf) U{/Uﬂ ene, 17(1) D),LL/ZW" Q/m&.la(ﬁ , @L&,

b) Color in the cells in the diagram above that contain the data at address 6.

The datapath reference is on the last page. You can tear it off if you want.

Problem 3 (15 points)

In the MIPS datapath, all of the following effectively implement R2 = R1:
e R2 =R1 OR O

e R2 = R1 OR RO
e R2 =R1 + 0
e R2 =Rl + RO

e Setting st_enandId_en to 1, disabling the arithmetic, logic, and shift units and memory, and using the Y bus to
transfer R1 to R2.

Describe two other unique ways to accomplish R2 = R1 in the MIPS datapath. You can use existing instructions, or
you can describe what the datapath components should do or what the control signals should be.

A/\)D W,,M,\ F?F?FFFF
o with. O
b LF b identih

The datapath diagram is on the last page. You can tear it off if you want.
Problem 4 (25 points)

4a) Use the description column to fill in the datapath signals to implement that operation.

im au| -a | lu su st |Id| -r
X Y Z |rwe | en im_va en| /s | en If3.0 en| st |en |en | /w | msel description
G O |O o O o [1ol 1| |MEmR3]=R7
i 7111 -3 2, O | | O |O|O|O | © |R7=R2SRL3

4b) From the provided microcode, write a description of the operation, either as an assembly code instruction or as a plain-English description. Simplify the
description of the operation if possible — for example, like in problem 3, if the datapath performs R2 = R1 OR 0, it would be better to write R2 = R1 or
“R2 gets the value of R1”. Note that everything not bolded is the same in all rows. Remember that the immediate is sign-extended.

im au | -a | lu su st Id -r
X Y Z |rwe | en im_va en| /s |en | Lfsp |en| st | en | en | /w | msel description

3 2 1 1 1 FFFF1e 0|0 1 |11170 | 0 | O 0 0 0 0

3 2 1 1 1 0 0|0 1 |1111 | 0 | O 0 0 0 0

SC'L K‘ J’” 67/} J/S

3 2 1 1 1 0 1|0 0 (0000 O | O 0 0 0 0 ﬁ y

3 2 1 1 0 FFFF1e 1|0 0 (0000 O | O 0 0 0 0

Problem 5 (25 points)

e Assume that R1 contains a value between 0 and 31, and consider that the “input” to the code.
e The “output” is in R5 after the code completes.

R2 = 32 #
R2 = R2 - R1 id
R5 = -1 id
R5 = R5 SRL R2 # shift by amount stored in R2

a) Describe the result of the code in terms of the input and output. Hint: the operation is mathematical in nature,
although it can be also described in terms of the bits if you don’t see the mathematical connection.

Pl 252 A %
E31§ @);q/ 2% =0...01L1l

b) The author of the code forgot that the shift amount for the MIPS shifter is 5 bits (refer to the datapath
reference). It comes from the least-significant 5 bits of the Y bus. How does that affect the behavior of the code
for the intended input range of 0-31?
(note that you can ignore any related incorrect behavior in your answer to part a)

f/\/VwL Mw(?&l“é O“}Q Aﬁygﬁ v\/of/L/ e car st SLM?QM -144’ you% wou(/(
§Lng ~l/l»t/ Wfov‘:) A:fe/ylﬁb/\/ L@M Al J(Lt/ M}+“ Q;D\/l/(’)%/b'}’ LA 5@
@L".«W/ (/\ﬁM}\,m"’ s M« on{/(/Vl?b\/h

Bonus (1 possible bonus point)

If you’ve finished early, fix the code so that it works for all input values 0-31. You can write actual code, or you can
describe the fix as long as it’s clear how it would be translated to assembly code.

im_en im_va

fe e £

immediate register
r'we—1 register X bus address
file 32
32x32 memory
Y bus
32
> 5 st_en
\V4 -afs \V4 If AV ot I data
arithmetic logic 4 shift 2
au_en unit lu_en unit su_en unit
Z bus | |
-r/w msel
32 X X , X
logic functions shift types shift amount (Y bus)
X Y|out O=logical postive = left shift Id_en
0 0lIfo 1=arithmetic negative = right shift
0 1|If1 2=rotate
1 0]lIf2
1 11If3
Signal Description Signal Description
X, Y Read register addresses If Logic function (see table below diagram))
z Write register address su_en Shift unit enable
rwe Register write enable st Shift type (see table below diagram)
im_en Immediate enable st_en Store enable
im_va Immediate value Id_en Load enable
au_en Arithmetic unit enable -r/w Read/write memory (O=read, 1=write)
-a/s Add/subtract (0=add, 1=subtract) msel Memory select (memory output enable)
lu_en Logic unit enable

instruction RTL description

add $d =5s +5t;

subtract Sd = Ss - St;

add immediate St =Ss +imm;

and Sd = Ss AND St;

or Sd = Ss OR St;

xor Sd = Ss XOR St;

and immediate St =Ss AND imm;

or immediate St =Ss OR imm;

xor immediate St = Ss XOR imm;

shift left logical Sd =St SLL a;

shift right logical Sd = St SRL a;

shift left arithmetic Sd =St SLA a;

shift right arithmetic Sd = St SRA a;

load word St = MEM([Ss];

store word MEM[Ss] = St;

load immediate St =imm;

branch if equal IF Ss = St GOTO label;
branch if not equal IF Ss 1= $t GOTO label;
set if less than Sd =S$s < $t; (if Ss< St Sd =1; else Sd =0;)
set if less than immediate Sd = $s < imm; (if Ss < imm St = 1; else St = 0;)
jump GOTO label;

