
ECE2020 A Fall 2018 Test 4

Name:

• Only a writing implement may be used on this exam (i.e. no books, notes, or any electronics).
• If the meaning of any question is not clear, please ask for clarification.
• Partial credit can only be awarded for work shown.

Honor pledge:
On my honor, I pledge that I will neither receive nor provide improper assistance in the completion of this test.
I understand and accept my responsibility as a member of the Georgia Tech Community to uphold the Honor
Code at all times, and I know that I have options for reporting honor violations at osi.gatech.edu.

GTID: Signature:

Boolean Identities

Identity 𝐴𝐴 + 0 = 𝐴𝐴 𝐴𝐴 · 1 = 𝐴𝐴

Dominance 𝐴𝐴 + 1 = 1 𝐴𝐴 · 0 = 0

Idempotence 𝐴𝐴 + 𝐴𝐴 = 𝐴𝐴 𝐴𝐴 · 𝐴𝐴 = 𝐴𝐴

Inverse 𝐴𝐴 + 𝐴𝐴 = 1 𝐴𝐴 · 𝐴𝐴 = 0

Commutative 𝐴𝐴 + 𝐵𝐵 = 𝐵𝐵 + 𝐴𝐴 𝐴𝐴 · 𝐵𝐵 = 𝐵𝐵 · 𝐴𝐴

Associative 𝐴𝐴 + (𝐵𝐵 + 𝐶𝐶) = (𝐴𝐴 + 𝐵𝐵) + 𝐶𝐶 𝐴𝐴 · (𝐵𝐵 · 𝐶𝐶) = (𝐴𝐴 · 𝐵𝐵) · 𝐶𝐶

Distributive 𝐴𝐴 · (𝐵𝐵 + 𝐶𝐶) = 𝐴𝐴 · 𝐵𝐵 + 𝐴𝐴 · 𝐶𝐶 𝐴𝐴 + 𝐵𝐵 · 𝐶𝐶 = (𝐴𝐴 + 𝐵𝐵) · (𝐴𝐴 + 𝐶𝐶)

Absorption 𝐴𝐴 · (𝐴𝐴 + 𝐵𝐵) = 𝐴𝐴 𝐴𝐴 + 𝐴𝐴 · 𝐵𝐵 = 𝐴𝐴

DeMorgan’s (𝐴𝐴 + 𝐵𝐵) = 𝐴𝐴 · 𝐵𝐵 (𝐴𝐴 · 𝐵𝐵) = 𝐴𝐴 + 𝐵𝐵

Double Complement �̿�𝐴 = 𝐴𝐴

FOIL (𝐴𝐴 + 𝐵𝐵) · (𝐶𝐶 + 𝐷𝐷) = 𝐴𝐴 · 𝐶𝐶 + 𝐴𝐴 · 𝐷𝐷 + 𝐵𝐵 · 𝐶𝐶 + 𝐵𝐵 · 𝐷𝐷

Disappearing opposite 𝐴𝐴 + 𝐴𝐴 · 𝐵𝐵 = 𝐴𝐴 + 𝐵𝐵

3-to-8 Line Decoder with Enable

A2 A1 A0 EN D7 D6 D5 D4 D3 D2 D1 D0
0 0 0 1 0 0 0 0 0 0 0 1
0 0 1 1 0 0 0 0 0 0 1 0
0 1 0 1 0 0 0 0 0 1 0 0
0 1 1 1 0 0 0 0 1 0 0 0
1 0 0 1 0 0 0 1 0 0 0 0
1 0 1 1 0 0 1 0 0 0 0 0
1 1 0 1 0 1 0 0 0 0 0 0
1 1 1 1 1 0 0 0 0 0 0 0
X X X 0 0 0 0 0 0 0 0 0

8-to-3 Priority Encoder (Priority A7->A0)

A7 A6 A5 A4 A3 A2 A1 A0 E2 E1 E0 Ac
1 X X X X X X X 1 1 1 1
0 1 X X X X X X 1 1 0 1
0 0 1 X X X X X 1 0 1 1
0 0 0 1 X X X X 1 0 0 1
0 0 0 0 1 X X X 0 1 1 1
0 0 0 0 0 1 X X 0 1 0 1
0 0 0 0 0 0 1 X 0 0 1 1
0 0 0 0 0 0 0 1 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0

8-channel Multiplexer
(inputs A7-0, output Q

S2 S1 S0 Q
0 0 0 A0
0 0 1 A1
0 1 0 A2
0 1 1 A3
1 0 0 A4
1 0 1 A5
1 1 0 A6
1 1 1 A7

8-channel Demultiplexer (input A, outputs Q7-0)

S2 S1 S0 Q7 Q6 Q5 Q4 Q3 Q2 Q1 Q0
0 0 0 0 0 0 0 0 0 0 A
0 0 1 0 0 0 0 0 0 A 0
0 1 0 0 0 0 0 0 A 0 0
0 1 1 0 0 0 0 A 0 0 0
1 0 0 0 0 0 A 0 0 0 0
1 0 1 0 0 A 0 0 0 0 0
1 1 0 0 A 0 0 0 0 0 0
1 1 1 A 0 0 0 0 0 0 0

Decimal Binary Hex
0 0 0
1 1 1
2 10 2
3 11 3
4 100 4
5 101 5
6 110 6
7 111 7
8 1000 8
9 1001 9
10 1010 A
11 1011 B
12 1100 C
13 1101 D
14 1110 E
15 1111 F

20 1
21 2
22 4
23 8
24 16
25 32
26 64
27 128
28 256
29 512
210 1024
211 2048
212 4096
213 8192
214 16,384
215 32,768
220 1,048,576

Problem 1 (25 points)
Here is some information about the 2114 RAM chip, which was used for video color RAM in the Commodore 64.

a) How many words of memory does this chip contain?

b) How many bits are in each word?

c) In the block diagram, the memory array is described as 64 rows and 64 columns. Is that referring to the words
or to the bit cells?

d) How would the memory array be described if it was the opposite of your answer from #3? I.e. if you said it was
referring to the bit cells, what would the description be if it was referring to the words, and vice versa.

e) If a different chip contained four times as many words, how many additional address pins would be needed?

f) Based on the block diagram, what combination(s) of S� and W� will tri-state the I/O pins? Assume that the tri-
state drivers are active when their control signal is 1.

Problem 2 (10 points)

a) Based on the memory devices we’ve seen in this class, what is an appropriate name for the signal marked with a

question mark in the bottom left of the diagram?

b) Color in the cells in the diagram above that contain the data at address 6.

The datapath reference is on the last page. You can tear it off if you want.
Problem 3 (15 points)
In the MIPS datapath, all of the following effectively implement R2 = R1:

• R2 = R1 OR 0
• R2 = R1 OR R0
• R2 = R1 + 0
• R2 = R1 + R0

• Setting st_en and ld_en to 1, disabling the arithmetic, logic, and shift units and memory, and using the Y bus to
transfer R1 to R2.

Describe two other unique ways to accomplish R2 = R1 in the MIPS datapath. You can use existing instructions, or
you can describe what the datapath components should do or what the control signals should be.

1)

2)

The datapath diagram is on the last page. You can tear it off if you want.
Problem 4 (25 points)
4a) Use the description column to fill in the datapath signals to implement that operation.

4b) From the provided microcode, write a description of the operation, either as an assembly code instruction or as a plain-English description. Simplify the
description of the operation if possible – for example, like in problem 3, if the datapath performs R2 = R1 OR 0, it would be better to write R2 = R1 or
“R2 gets the value of R1”. Note that everything not bolded is the same in all rows. Remember that the immediate is sign-extended.

X Y Z rwe
im
en im_va

au
en

-a
/s

lu
en lf3-0

su
en st

st
en

ld
en

-r
/w msel description

MEM[R3] = R7

R7 = R2 SRL 3

X Y Z rwe
im
en im_va

au
en

-a
/s

lu
en Lf3-0

su
en st

st
en

ld
en

-r
/w msel description

3 2 1 1 1 FFFF16 0 0 1 1110 0 0 0 0 0 0

3 2 1 1 1 0 0 0 1 1111 0 0 0 0 0 0

3 2 1 1 1 0 1 0 0 0000 0 0 0 0 0 0

3 2 1 1 0 FFFF16 1 0 0 0000 0 0 0 0 0 0

Problem 5 (25 points)

• Assume that R1 contains a value between 0 and 31, and consider that the “input” to the code.
• The “output” is in R5 after the code completes.

 R2 = 32 #
 R2 = R2 – R1 #
 R5 = -1 #
 R5 = R5 SRL R2 # shift by amount stored in R2

a) Describe the result of the code in terms of the input and output. Hint: the operation is mathematical in nature,
although it can be also described in terms of the bits if you don’t see the mathematical connection.

b) The author of the code forgot that the shift amount for the MIPS shifter is 5 bits (refer to the datapath
reference). It comes from the least-significant 5 bits of the Y bus. How does that affect the behavior of the code
for the intended input range of 0-31?

(note that you can ignore any related incorrect behavior in your answer to part a)

Bonus (1 possible bonus point)
If you’ve finished early, fix the code so that it works for all input values 0-31. You can write actual code, or you can
describe the fix as long as it’s clear how it would be translated to assembly code.

Signal Description Signal Description

X, Y Read register addresses lf Logic function (see table below diagram))
Z Write register address su_en Shift unit enable
rwe Register write enable st Shift type (see table below diagram)
im_en Immediate enable st_en Store enable
im_va Immediate value ld_en Load enable
au_en Arithmetic unit enable -r/w Read/write memory (0=read, 1=write)
-a/s Add/subtract (0=add, 1=subtract) msel Memory select (memory output enable)
lu_en Logic unit enable

instruction RTL description

add $d = $s + $t;
subtract $d = $s - $t;
add immediate $t = $s + imm;
and $d = $s AND $t;
or $d = $s OR $t;
xor $d = $s XOR $t;
and immediate $t = $s AND imm;
or immediate $t = $s OR imm;
xor immediate $t = $s XOR imm;
shift left logical $d = $t SLL a;
shift right logical $d = $t SRL a;
shift left arithmetic $d = $t SLA a;
shift right arithmetic $d = $t SRA a;
load word $t = MEM[$s];
store word MEM[$s] = $t;
load immediate $t = imm;
branch if equal IF $s = $t GOTO label;
branch if not equal IF $s != $t GOTO label;
set if less than $d = $s < $t; (if $s < $t $d = 1; else $d = 0;)
set if less than immediate $d = $s < imm; (if $s < imm $t = 1; else $t = 0;)
jump GOTO label;

