
ECE 2030 B 12:00pm Computer Engineering Fall 2010
5 problems, 9 pages Final Exam 13 December 2010

Instructions: This is a closed book, closed note exam. Calculators are not permitted. If you have
a question, raise your hand and I will come to you. Please work the exam in pencil and do not
separate the pages of the exam. For maximum credit, show your work.
Good Luck!

Your Name (please print) __

1 2 3 4 5 total

24 32 30 48 39 173

1

ECE 2030 B 12:00pm Computer Engineering Fall 2010
5 problems, 9 pages Final Exam 13 December 2010

Problem 1 (3 parts, 24 points) Design This
Complete each design below. Be sure to label all signals.

Part A: Define a 2 to 1 priority encoder, where I1 > I0, by
completing the behavior table.

IN
0

IN
1

Out

V

2 to 1
Priority

Encoder

IN0 IN1 V Out

0 X

1 0

1 1

Implement the 2 to 1 encoder using one basic gate. Only
true (non-complemented) inputs are available. Label all
inputs (IN0, IN1) and outputs (Out, V).

Part B: Implement a 1 to 2 demux using only pass gates
and an inverter. Determine # of switches needed.

switches =

Part C: Complete the truth table for even parity. Then
write a sum of products (SOP) expression.

A B Out

0 0

1 0

0 1

1 1

A⊕B=

2

ECE 2030 B 12:00pm Computer Engineering Fall 2010
5 problems, 9 pages Final Exam 13 December 2010

Problem 2 (4 parts, 32 points) Design That
Complete each design below. Be sure to label all signals.

Part A: Complete the following CMOS design. Also
express its behavior.

Out =

Part B: Implement the following expression using
NAND and NOT gates. Use proper mixed logic design.
Determine # of switches needed.

Out=AB⋅C⋅D

switches =

Part C: Implement a transparent latch using only NOR
and NOT gates.

Part D: Draw the state table for the following state
diagram.

00 01

10

/ /

/

A/

A/
A/B

A S1 S0 NS1 NS0 B

3

ECE 2030 B 12:00pm Computer Engineering Fall 2010
5 problems, 9 pages Final Exam 13 December 2010

Problem 3 (3 parts, 30 points) Accountable

Part A (10 points) Design a toggle cell using transparent latches, 2to1 muxes, and inverters
(use icons, labeling inputs & outputs). Your toggle cell should have an active high toggle
enable input TE, and an active low clear input CLR, clock inputs Φ1 and Φ2, and an output Out.
The CLR signal has precedence over TE. Also complete the behavior table for the toggle cell.

TE

Out

CLR Φ1 Φ2

TE CLR CLK Out

0 0 ↑↓

1 0 ↑↓

0 1 ↑↓

1 1 ↑↓

Part B (10 points) Now combine these toggle cells to build a divide by 6 counter. Your counter
should have an external clear, external count enable, and three count outputs O2, O1, O0. Use any
basic gates (AND, OR, NAND, NOR, & NOT) you require. Assume clock inputs to the toggle
cells are already connected. Your design should support multi-digit systems.

O
0

O
1

O
2

Ext CE

Ext CLR

TE

CLR

 Out

TE

CLR

 Out

TE

CLR

 Out

4

ECE 2030 B 12:00pm Computer Engineering Fall 2010
5 problems, 9 pages Final Exam 13 December 2010

Part C (10 points) Build a stopwatch that counts seconds and minutes using divide by N counters
drawn below. Be sure to fill in the needed divider for seconds, tens of seconds, and minutes.
Use any basic gates you require. Assume a one hertz clock is already connected.

Ext CLR Ext CE

CLR CE

 Out

Max
Count

 Divide by __

CE

 Out

Max
Count

 Divide by __

CLR

 Out

Max
Count

 Divide by __

CLR CE

5

ECE 2030 B 12:00pm Computer Engineering Fall 2010
5 problems, 9 pages Final Exam 13 December 2010

Problem 4 (2 parts, 48 points) Microcode in Reverse
Part A (20 points) Translate this undocumented microcode fragment to corresponding MIPS
assembly instructions. Also include comments summarizing the instruction.

X Y Z rwe im
en

im va au
en

-a/s lu
en

lf su
en

st ld
en

st
en

r/-w msel

1 5 0 7 1 0 0 0 0 0 0 0 0 1 0 1 1
2 7 0 9 1 1 C 0 0 0 0 1 0 0 0 0 0
3 9 0 9 1 1 FFF 0 0 1 8 0 0 0 0 0 0
4 9 A A 1 0 0 1 0 0 0 0 0 0 0 0 0
5 8 A 0 0 0 0 0 0 0 0 0 0 0 1 0 1

1 #

2 #

3 #

4 #

5 #

Part B (28 points) Complete a recursive subroutine that computes the factorial of N. Assume N is
received in $1 and N! is returned in $2. $29 is the stack pointer.

label instruction comment

Fact: # init result to 1

if N < 2

you're done

allocate stack space

push return address

push N

decrement N

call Fact(N-1)

pop N

pop return address

deallocate stack space

N * Fact(N-1)

place result in $2

return to caller

6

ECE 2030 B 12:00pm Computer Engineering Fall 2010
5 problems, 9 pages Final Exam 13 December 2010

Problem 5 (4 parts, 39 points) “Random Bits”
Part A (9 points) Consider the instruction set architecture below with fields containing zeros.

0 0000 0000 0000 0000 0000 0000 0000 0000
opcode dest. reg. source 1 reg. immediate value

What is the maximum number of opcodes?

What is the number of registers?

What is the range of the signed immediate value?

Part B (9 points) For the representations below, determine the most positive value and the step
size (difference between sequential values). All answers should be expressed in decimal
notation. Fractions (e.g., 3/16ths) may be used. Signed representations are two’s complement.

representation most positive value step size

signed integer
(15 bits) . (0 bits)

unsigned fixed-point
(10 bits) . (5 bits)

signed fixed-point
(5 bits) . (10 bits)

Part C (9 points) A 16 bit floating point representation has a 10 bit mantissa field, a 5 bit
exponent field, and one sign bit. Express all answers in decimal.

What is the largest value that can be represented (closest to infinity)?

What is the smallest value that can be represented (closest to zero)?

How many decimal significant figures are supported?

Part D (12 points) For each problem below, compute the operations using the rules of arithmetic,
and indicate whether an overflow occurs assuming all numbers are expressed using a five bit
unsigned fixed-point and five bit two’s complement fixed-point representations.

 11.1
+ 1 11.1

 11.011
+ 1 0. 101

 10101
- 101 0

 100.00
+ .01

result

unsigned error? □ no □ yes □ no □ yes □ no □ yes □ no □ yes

signed error? □ no □ yes □ no □ yes □ no □ yes □ no □ yes

7

ECE 2030 B 12:00pm Computer Engineering Fall 2010
5 problems, 9 pages Final Exam 13 December 2010

memory

register
file

32 x 32

555

rwe

X Y Z

au en

-a/s

arithmetic
unit

sign extender

im vaim en

lu en

logical
unit

lf
4

addr

data

r/-w msel

st en

ld en

shift types
0 = logical
1 = arithmetic
2 = rotate
+ count shifts right
- count shifts left

logical functions
X Y out
0 0 lf0

1 0 lf1

0 1 lf2

1 1 lf3

cycle cycle number
X register driven onto X bus
Y register driven onto Y bus
Z register written from Z bus
rwe register write enable
im en immediate enable on Y bus
im va immediate value

au en arithmetic unit enable
-a/s -add / sub (0 = add, 1 = subtract)
lu en logical unit enable
lf logical function
su en shift unit enable
st shift type
ld en load enable
st en store enable
r/-w read/-write (0 = write, 1 = read)
msel memory select
description operation description

su en

shift
unit

st
2

count

16

32

8

ECE 2030 B 12:00pm Computer Engineering Fall 2010
5 problems, 9 pages Final Exam 13 December 2010

MIPS Instruction Set

instruction example meaning
arithmetic

add add $1,$2,$3 $1 = $2 + $3
subtract sub $1,$2,$3 $1 = $2 - $3
add immediate addi $1,$2,100 $1 = $2 + 100
add unsigned addu $1,$2,$3 $1 = $2 + $3
subtract unsigned subu $1,$2,$3 $1 = $2 - $3
add immediate unsigned addiu $1,$2,100 $1 = $2 + 100
set if less than slt $1, $2, $3 if ($2 < $3), $1 = 1 else $1 = 0
set if less than immediate slti $1, $2, 100 if ($2 < 100), $1 = 1 else $1 = 0
set if less than unsigned sltu $1, $2, $3 if ($2 < $3), $1 = 1 else $1 = 0
set if < immediate unsigned sltui $1, $2, 100 if ($2 < 100), $1 = 1 else $1 = 0
multiply mult $2,$3 Hi, Lo = $2 * $3, 64-bit signed product
multiply unsigned multu $2,$3 Hi, Lo = $2 * $3, 64-bit unsigned product
divide div $2,$3 Lo = $2 / $3, Hi = $2 mod $3
divide unsigned divu $2,$3 Lo = $2 / $3, Hi = $2 mod $3, unsigned

transfer
move from Hi mfhi $1 $1 = Hi
move from Lo mflo $1 $1 = Lo
load upper immediate lui $1,100 $1 = 100 x 216

logic
and and $1,$2,$3 $1 = $2 & $3
or or $1,$2,$3 $1 = $2 | $3
and immediate andi $1,$2,100 $1 = $2 & 100
or immediate ori $1,$2,100 $1 = $2 | 100
nor nor $1,$2,$3 $1 = not($2 | $3)
xor xor $1, $2, $3 $1 = $2 ⊕ $3
xor immediate xori $1, $2, 255 $1 = $2 ⊕ 255

shift
shift left logical sll $1,$2,5 $1 = $2 << 5 (logical)
shift left logical variable sllv $1,$2,$3 $1 = $2 << $3 (logical), variable shift amt
shift right logical srl $1,$2,5 $1 = $2 >> 5 (logical)
shift right logical variable srlv $1,$2,$3 $1 = $2 >> $3 (logical), variable shift amt
shift right arithmetic sra $1,$2,5 $1 = $2 >> 5 (arithmetic)
shift right arithmetic variable srav $1,$2,$3 $1 = $2 >> $3 (arithmetic), variable shift amt

memory
load word lw $1, 1000($2) $1 = memory [$2+1000]
store word sw $1, 1000($2) memory [$2+1000] = $1
load byte lb $1, 1002($2) $1 = memory[$2+1002] in least sig. byte
load byte unsigned lbu $1, 1002($2) $1 = memory[$2+1002] in least sig. byte
store byte sb $1, 1002($2) memory[$2+1002] = $1 (byte modified only)

branch
branch if equal beq $1,$2,100 if ($1 = $2), PC = PC + 4 + (100*4)
branch if not equal bne $1,$2,100 if ($1 ≠ $2), PC = PC + 4 + (100*4)

jump
jump j 10000 PC = 10000*4
jump register jr $31 PC = $31
jump and link jal 10000 $31 = PC + 4; PC = 10000*4

9

