
ECE 2030 2:00pm Computer Engineering Fall 2010

5 problems, 7 pages Final Exam Solutions 17 December 2010

Problem 1 (3 parts, 28 points) Instruction Formats, Etc.

Part A (8 points) Suppose a datapath has three operand busses (two source, one destination), 244
different instruction types, and 128 registers where each register is 32 bits wide. Immediate
operands can be in the range of ±8K. Label the fields of an I-type instruction format and indicate
the maximum number of bits needed for each field.

Part B (8 points) Derive the simplified POS expression from the following Karnaugh map.

Simplified POS expression: AC ⋅BC 

Part C (12 points) For each problem below, compute the operations using the rules of arithmetic,
and indicate whether an overflow occurs assuming all numbers are expressed using a four bit
unsigned and four bit two’s complement representations.

1010
+ 11 0

101
+ 1 0 0

1011
- 1110

1010
- 10 1

result 0000 1001 1101 0101
unsigned

error? yes no yes no

signed
error? no yes no yes

1

ECE 2030 2:00pm Computer Engineering Fall 2010

5 problems, 7 pages Final Exam Solutions 17 December 2010

Problem 2 (4 parts, 32 points) Dueling Designs
Complete each design below. Be sure to label all signals.

Part A: Complete the following CMOS design. Also
express its behavior.

Out =  AD ⋅ BCE 

Part B: Implement the following expression using NOR
gates. Use proper mixed logic design. Determine # of
switches needed.

Out=AB ⋅C⋅DE

switches = 1 x 6 + 2 x 4 + 2 x 2 = 18T

Part C: Complete the truth table for even parity. Then
implement the behavior using only one 2 to 4 decoder
and one OR gate. Label all inputs and outputs of the
decoder.

A B A⊕B

0 0 1

1 0 0

0 1 0

1 1 1

2 to 4

In0

In1

En

O0

O1

O2

O3

A
B Out

Part D: Complete the behavior table for a 2 to 4 decoder.
Then implement it using three 1 to 2 decoders.

IN1 IN0 En O0 O1 O2 O3

X X 0 0 0 0 0
0 0 1 1 0 0 0
0 1 1 0 1 0 0
1 0 1 0 0 1 0
1 1 1 0 0 0 1

IN

EN

O0

O1

1 to 2
decoder

IN

EN

O0

O1

1 to 2
decoder

IN

EN

O0

O1

1 to 2
decoder

O0

O1

O2

O3

IN0

IN1

EN

2

ECE 2030 2:00pm Computer Engineering Fall 2010

5 problems, 7 pages Final Exam Solutions 17 December 2010

Problem 3 (3 parts, 24 points) Counters

Part A (7 points) Implement a toggle cell using only transparent latches and basic gates (XOR,
AND, OR, NAND, NOR, NOT). Use an icon for the transparent latches. Label the inputs TE,

CLR , Φ1, Φ2 and the output Out.

In Out

En

Latch

In Out

En

Latch
TE Out

CLR

Φ1 Φ2

Part B (8 points) Now combine these toggle cells to build a divide by 24 counter. Your counter
should have an external clear, external count enable, and five count outputs O4, O3, O2, O1, O0.
Use any basic gates (AND, OR, NAND, NOR, & NOT) you require. Assume clock inputs to the
toggle cells are already connected. Your design should support multi-digit systems.

O0

O1

O2

Ext Clr

Ext CE

TE
Out

Clr

TE
Out

Clr

TE
Out

Clr
O3

TE
Out

Clr

TE
Out

Clr

O4

3

ECE 2030 2:00pm Computer Engineering Fall 2010

5 problems, 7 pages Final Exam Solutions 17 December 2010

Part C (9 points) Build a military timer (HH:MM) which displays hours (0...23) on the left and
minutes (0...59) on the right as follows. In the diagram below:

a) Fill in the label “Divide by ” on each counter.

b) Label the number of output wires coming from each counter to its attached display.

c) Draw the appropriate wiring connections to allow this military timer to correctly respond to
external clear (Ext CLR) and count enable (Ext CE) signals, and to correctly increment the hour
count when the maximum number of minutes have passed while the clock is still running.

Use any basic gates you require. Assume clock inputs are already connected.

Ext CLR Ext CE

CLR CE

 Out

Max Count

 Divide by 60

CLR CE

 Out

Max Count

 Divide by 24
(a) (a)

(b) (b)5 6

4

ECE 2030 2:00pm Computer Engineering Fall 2010

5 problems, 7 pages Final Exam Solutions 17 December 2010

Problem 4 (3 parts, 28 points) Storage

Part A (12 points) Consider a 256 Mbit DRAM chip organized as 8 million addresses of 32-bit words.
Assume both the DRAM cell and the DRAM chip are square. The column number and offset concatenate
to form the memory address. Using the organization approach discussed in class, answer the following
questions about the chip. Express all answers in decimal (not powers of two).

total number of bits in address log2(8M) = 23
number of columns sqrt(256M) = sqrt(228) = 214 = 16K

column decoder required (n to m) 14 to 16K
number of words per column 214 / 25 = 29 = 512
type of mux required (n to m) 512 to 1

number of address lines in column offset log2(512) = 9

Part B (10 points) Implement a ten transistor transparent latch (left) and a register with write
enable (right) using the 2 to 1 mux plus other devices. Label all inputs and outputs.

I0

I1

O

S
In

Out

En

I0

I1

O

S
In

Out

WE

In Out

En

T
In Out

En

T

10T Transparent Latch register with write enable

Part C (6 points) Assume the following signals are applied to a register with write enable. Draw
the output signal Out. Draw a vertical line where In is sampled. Assume Out is initially zero.

Φ1

Φ2

WE

In

Out

5

ECE 2030 2:00pm Computer Engineering Fall 2010

5 problems, 7 pages Final Exam Solutions 17 December 2010

Problem 5 (5 parts, 32 points) Assembly Language Programming

Part A (14 points) Write a MIPS subroutine SumMags that reads in a vector of integers and sums up the
magnitude (absolute value) of each element, placing the sum of magnitudes in register $3. Assume the
length of the vector (# of integer elements) is given in register $2 and is > 0, and the base address of the
vector is in register $1. Your code calls the subroutine Abs, which computes the absolute value of an
integer x given in register $4; it returns ∣x∣ in register $4. Follow the steps outlined in the
comments in the rightmost column below. You may modify only registers $1 through $4.

label instruction comment

SumMags: addi $3, $0 0 # initialize running sum ($3 = 0)

Loop: lw $4, ($1) # load current vector element x into $4

B: [leave blank for
 part A]

code to be written in part B to
preserve registers on stack

jal Abs # call Abs ($4 = |x|)

C: [leave blank for
 part A]

code to be written in part C to
restore registers on stack

add $3, $3, $4 # add |x| to running sum

addi $1, $1, 4 # increment vector pointer to next element

addi $2, $2, -1 # decrement number of elements by 1

bne $2, $0, Loop # if number of elements ≠ 0, loop back

jr $31 # return to caller

Part B (5 points) To ensure that SumMags can be properly called by another subroutine and that
SumMags can call Abs without losing any of the intermediate values it computes, you must add
code before and after the “jal Abs” instruction. Write MIPS code to preserve registers before
the jal by pushing them on the stack. Assume Abs can modify any registers, not just $4.

label instruction comment

B: addi $29, $29, -4 # push $31 by adjusting SP

sw $31, ($29) # and storing $31

addi $29, $29, -4 # push $1 by adjusting SP

sw $1, ($29) # and storing $1

addi $29, $29, -4 # push $2 by adjusting SP

sw $2, ($29) # and storing $2

addi $29, $29, -4 # push $3 by adjusting SP

sw $3, ($29) # and storing $3

jal Abs # call Abs ($4 = |x|)

6

ECE 2030 2:00pm Computer Engineering Fall 2010

5 problems, 7 pages Final Exam Solutions 17 December 2010

Part C (5 points) Write MIPS code to restore registers after the jal by popping them from the
stack. Assume Abs can modify any registers, not just $4.

label instruction comment

jal Abs # call Abs ($4 = |x|)

C: lw $3, ($29) # pop $3 by loading it and

addi $29, $29, 4 # adjusting SP

lw $2, ($29) # pop $2 by loading it and

addi $29, $29, 4 # adjusting SP

lw $1, ($29) # pop $1 by loading it and

addi $29, $29, 4 # adjusting SP

lw $31, ($29) # pop $31 by loading it and

addi $29, $29, 4 # adjusting SP

Part D (4 points) Write the MIPS instruction that is equivalent to the following microinstruction.
X Y Z rwe im

en
im va au

en
s/
a

lu
en

lf su
en

st ld
en

st
en

r/
 w

msel description

6 2 8 7 1 0 x 0 x 1 8 0 x 0 0 x 0

Equivalent MIPS Instruction: and $7, $2, $8

Part E (4 points) Write the MIPS instruction that is equivalent to the following microinstruction.
X Y Z rwe im

en
im va au

en
s/
a

lu
en

lf su
en

st ld
en

st
en

r/
 w

msel description

7 3 x 6 1 1 FFFA 0 x 0 x 1 0 0 0 x 0

Equivalent MIPS Instruction: sll $6, $3, 6

7

