ECE2020 Final Exam Summer 2013 GTL
July 31,2013

Name:

ke

Show your work for any possible partial credit. 100 possible points, 12 cxam pages plus a figure.

High Level Language

Assembly Language

Instruction Set

Memory Data Path ‘ Controller
Storage Functional State
Units Machines

Building Biocks

Gate

Switches and Wires

1) (6 Points) Three incomplete circuits are shown below. Complete each circuit by adding the needed
switching network so the output is pulled high or low for all combinations of inputs (i.e., no floats or
shorts). Complete each circuit (pull down, pull up, or both) and write the expression if one is not given.

Assume both inputs and complements are available.

Of

-
-

Out1= Cﬁ(D'}E))

Out,

.y
oF
]

&

T
B
H
OUtz

S .

,_._.,—

{ M~

NLlE[- Ad‘\

,+

Out,

Out;= D (A +B+ C)E

High Level Language

Assembly Language

Instruction Set

Memory Data Path Controller
Storage Functional State
Units Machines

Building Blocks

Switches and Wires

2) (5 points) Implement the following expression using only NOR gates and inverters. Then determine the
number of switches required. Use proper mixed logic notation. Do not modify the expression. Do not

assume compliments of inputs are available.

4-

Out=(A4-B+C) D+E) F

Sx4¢ + 2%x2 = 24

Number of switches

High Level Language

Assembly Language

Instruction Set

Memory Data Path Controller

Storage Functional State

Gate

Switches and Wires

3) (5 points) Using only the devices below, implement a two-to-one mux on the diagram below. (The
block diagram of a 2 to 1 mux is show above just as an FYI only).

InQ

Inl

Select — -

High Level Language

Assembly Language

Instruction Set

Memory Data Path Controller
Functional State
_Units Machines

Building Blocks

Gate

Switches and Wires

=t In Qutf=
Latch
En

clkl

4) (5 points) Using a two-to-one mux, implement a transparent latch using basic gates (NAND, NOR,
AND, OR, NOT, pass). Enable here is an active high write enable. (The block diagram of a transparent
latch is show above just as an FYT only).

Try to minimize transistors.

i

In0

Qut
Inl

—

Qutput

High Level Language

Assembly Language

Instruction Set

Controller

State

Machines

Data Path

Functional

Units
Building Blocks

Memory

Gate

Switches and Wires

5) (8 points) Consider the register implementation below.

-
.
e
-

Latch
En

tch

n
red

clk2

clkl

Assume the following signals are applied to the register above. Draw the signal at point A (output of the

first latch), the signal at point OUT (output of second latch). Assume A and OUT start at logic unknown

values.

i
1 EE I O L
B I e
Arh ol

B B I B

Clk1

Clk2

High Level Language

Assembly Language

Instruction Set

Memory

Data Path Controller

Storage

SN

Building Blocks

Gate

Switches and Wires

6) a)(5 points) Complete the truth table below to the left for a "full adder" as shown below on the right.

X Y Ci| Sum Carryoy, ‘

6 o O o o .

moa . o — x cin

o1 0 I l>) sum—>
o v\ 0 | ———P

y cout

lo o i o

1o\ o | I

1L 0 o |

Py \ |

b) (10 Points) Using four of the full adder blocks shown above to the right, show how four of them would
be used to implement a four bit adder that would be able to add/subtract two four bit numbers. Your
inputs are X3, X2, X1, X0, Y3,Y2, Y1, YO, a@sub, S3, S2, S1, SO. You may use any additional logic
gate types you want. Draw your hardware diagram below:

&

http:1k11/t;.ub

7) (10 points total) State machine problem straight from the practice problems:

Strike State Machine

You're designing a baseball scoreboard. A sub-problem involves keeping track of strikes and fouls. A
strike occurs when the batter swings at the ball and misses, or when the batter does not swing at a
“good” pitch. If a batter earns three strikes during his/her turn at bat, he fshe is “out”. A foul occurs
when the batter hits the ball. but the ball does not land in “fair™ tervitory. Fouls are counted as strikes
until the batter earns two strikes. Then fouls are ignored. The state diagram below eaptures these rules,
The null input indicates neither a strike nor a foul occurred during that clock eyele. The strike and foul
input eannot occur simultaneously. so the autput for this case is don'’t care.

mll /

Part A Using the state dingram above, complete the state table for this diagram. The inputs are strike,
foul, and state bits 8§ and S;. The outputs are next state bits NS, and NS;. and out.

S, S strike foul | N5, NS; oul
i) i i3 0 5 o f)
3] [} 1 1 0 | o
0 L] 1 1

@ | o
{1 1 i) 1] o | o)
)] 1] [l 0 0
1 1 1 {

) 0 0
1 il 1 f) | ® 0
1 8] 4] 1 i A o)
1 1 1 1) 6 o I

Part B Determine the simplified logical expression for NS1. N Ss, and out using your state table in part
A. Complete the Karnaugh maps below. identify the prime implicants, and express the result.

NS _ NS, out
0| o \/ |} strike o |[M\|o | o |}snke 0|le | |0 |smke
S LVl) " } % }
SLXLELO e 210 Vpiee M2 yms&ik
[araFam) AR o | ¥\«
. o) strke o xéﬂi.ﬁ% 0o |x| x|}k
‘ S Sﬁr.‘E. + SgcFowl + Sa ™ S-ém'ko_

:\7S| = ‘ pm— s | Sgm—
NSy = SQ' Stprika - foul + S1- Se foul + sl‘sc'S‘tnhL
— S, +Strike

Part C Implement this state machine using your expression from part B, plus two register cells. Use an
icon for a ane bit register cell. You do not have to show the implementation of a register here, Your logic

should be simplified.

st

So e NS
Foo :1D——_J e
ReLTSTE

9":1‘ |‘ ke
oo

High Level Language

Assembly Language

Instruction Set

4 Data Path Controller
u o
Storage Functional State
Units Machines _
Building Blocks
Gate
F “Switches and Wires

8) (6 points) SIMM Memory System:
Using SIMMs that are 8 million addresses by 8 bit words:

Part A Suppose that these SIMMS are used to build a 16 million address memory system with 8 bit
words. Using however many of these SIMMs you need, draw this memory system. In the drawing you
make below, add as many SIMM chips as you need and then be sure you label the memory system inputs,
Addr, R/W, and Mem Sel, and the system's outputs DO, D1, D2, etc. Also label bus widths, and inputs and
outputs of any required decoders. Put a star on the chip(s) containing the memory location addressed
by an address containing a one followed all zeros (all of the address bits are input as a zero except

i o ot 1 26 32 26 23
the most significant bit which is a one). M => 8.2 = 2°27=12
23
TR L0 ~+addr D0 4
= — p!
T s e e p— DL
—— e 03
— 54
AW — fs
e — P
¢ D7 .\‘..,T‘,__T_,___‘ >
A3 [(
Rlws ,&,‘_;J
mSe A
R [

High Level Language

Assembly Language

~ Memory | Data
Storage Functional State

Units Machines
Building Blocks

Gate

Switches and Wires

9) Using the attached single cycle datapath we have discussed extensively in class (see last page of exam
for part of it), implement the microcode for the following instructions (see instruction examples also on
last page):

a) (5 points) addi $3, $2, 25
#|X |Y |Z |rw|im |imva |au |-a | lu If |sulst [ld st [r/ [msel [description
e en | /s |en en en | en
€n -W
Playxi3 1 0 10 | 2s | |olo |ywxlolkx|olol| x| o $3=52+25
b) (5 points) sw $1, (82)
X |Y |Z |rw|im |imva |[au |-a |lu If su st |Id st |/ | msel | description
e en /s |en en en | en
en -w
1
Z| 1| %X|lo]| D| % 6 [X| 0 [xwx| o |x¥x|o]|)] |» ! wemey[g2]=} |

¢) (5 points) Thinking about the "putting it all together" system block diagram: Which bit fields in the part
(a) microcode you wrote above would be stored in a Read Only Memory controller? For those fields not
stored in the Read Only memory controller where would they come from?

THE REGISTER SELECTION 516vpLS For 2,1, 2 AND THE

IMMEDIATE VRLLE oF 295 PRE CenThinep In THE ACTualL
| NSTAV <rjon STORED I~ mevw ey

ALL oThen Siéwmatsg (Cwe) (mm 20, O*C) ARt STOARD 10
(8 REn2 oNn+ Y Yy Emop) CUONT®ELvLLER

High Level Language

Assembly Language

Memory Data Path Controller
Storage Functional State
Units Machines

Building Blocks

|

Gate

Switches and Wires

10) (5 points) Instruction Format. For the third instruction type we discussed, the Immediate Instruction
Format, show the actual 32 bits for the instruction:

addi $10, $8, 4

assuming the opcode for addi is 001000.

Dpeod € -

l&
la
Kz
lo
1C
| O
1o
t——
10
I-—

| &
o
].—

o
1c

8

TMED pTE

080 o000

VALVE

oeoa

4

L -

11

9) Assembly language programming

Consider the following MIPS program fragment. The attached last exam page lists the instruction set and

explains them with examples.

1000 start: | addi $1, 50,300
1004 1w $2, (51)

1008 loop: | addi $1,%1,4
1012 1w $4, (51)

1016 slt $3,52,54
1020 beq 53,50, skipl
1024 add $2,50,54
1028 skipl: | s1ti $3,51, 324
1032 bne $3, 50, loop
1036 add $5,%0,52

Assume memory holds the following starting at address 300:

Address Data

300 -16
304 -7
308 -12
312 5
316 8
320 -3
324 10
328 -19
332 34
336 20

Part a) (5 points) How many words of data are read in by the program fragment?

Total number of data words read: =+ 300 — 324 inCLusiv €

Part b) (5 points) How many times is the add instruction at address 1024 executed?
Number of times: 4-

Part ¢) (5 points) What are the values in the following registers at the end of the program fragment?
$1= 224

$2= 10
$3= ©
$4= o
$5= 10

Part d) (5 points) What does this program fragment do?

FIluDS ™MAX VRALUE IN MBEnWepy 200 -0 229
INCLUSIUE

12

You may tear this off from the exam and you do not need to turn in this page.

cicle cycle pumber au en arithmetic wmit enabie
X reguster driven onto X bus | - -nddl dd / sub (0 = add, [= subtract)
I register driven onto Y bus I en logical unit enable
£ e wntten from Z b 3 logic; non
we register write enable suen shift uni enable |
ini en imumediate erable on Y bus st ift
im va immediate vajue lden load egable
. |sten _| store enable
X X % m T r-w /-write (0 = wni =I
“'5 :tS‘j’ T+ 16 :;eg_gl'ﬁo» omematicn - fion
sign e: extender
we — addr
register 132
file ’_/
32x32 [>
‘ r memory
o sten
% . Z -a's / I f ‘ 7_" st] a2
arithmetic 10g1ca1 4 shift 2
au en umt ke unll
[=i N
I
<] L— r-w msel
logical functions shift types
0=1lomcal
1 = arithmetic
2 = rotate Hden
+ count shufts right
- count shifts left
instruction example meaning
add add §1,82,83 £l = §2 4 §3F
subtract sub S51,82,83 51 g2 $3
add immediate addi %1,%2,100 S1 = §2 + 160
multiply mal 51,52,53 51 = 52 ~ 53
divide div 51,82,83 §1 = 62 / &3
and and §1,82,83 gl 82 & $3
or or §1,52,83 5t = 8¢ | §3
xor xor $1,%2,%3 S1 = §2 »xor §3
and mmmediate andi $1,52,100 S1 = $2 & 100
or immediate ori $1,$2,100 $1 =52 | 100
xor immediate xori §1,§2,100 1 = $2 xor 100
shift left logical sll 51,5%2,5 S1 = §2 << 5 (logical}
shuft night logical srl 51,52,5 §1 = §2 > 5 (logieal}
shift left arithmetic sla 51,%2,5 81 = §2 << 5 (arithmetic)
shift right anthmetic sra $1,%2,5 $1 = §2 >> 5 (arithmetic)
load word 1w S1,; (S2) $1 = memory [$2]
store word sw 51, (52) memory ([52]
load upper immediate lui 51,100 §1 = 144 =z 2*°
branch if equal beq $1,52,100 if {($1 = 32), PC = PC + 4 + (10G*4)
branch if not equal bne $1,82,100 if (SL # $2), PC = PC + 4 + (l00*4)
set if less than sly 31, B2, B3 if ($2 < 83), S51L = 1 else S = (@
set if less than immediate slti §1, §2, 100 if (82 100), §1 = 1 else S1 = 0
Jump 3§ 10000 PC = 10000*4
_jump register jr $31 PC = §£31
jutnp and link jal 10000 $31 = PC + 4; PC = 10000%4

13

